

Associations Between Human Figure Drawing Performance and Developmental Milestones in Children Aged 4–7

Aqsa Arif¹

¹Mhpill Student, Institute of Professional Psychology, Karachi, Pakistan.

Abstract

Objective:

Human Figure Drawing (HFD) has one of the most recognized test for personality. Though its focus has now been changed from projective personality inference toward developmental and neuropsychological perspectives. Current literature suggests that use of HFD might reflect underlying motor and cognitive maturation in children. However, empirical findings remain unexplored. Thus the aim of our study was to check the association between HFD and Developmental milestones in children

Material and Methods:

A cross sectional study design was employed. In order to assess the figures, a modified coding system was used related to structural complexity, visuomotor execution, and representational accuracy. Age dependants motor and cognitive measures were used to evaluate the developmental milestones. Age stratification grouping to analyze developmental stage.

Received: June 11, 2025

Accepted: Sept 27, 2025

Published: Jan 8, 2025

Corresponding Author:

Aqsa Arif
arifaqsa6@gmail.com

Article information is listed
at the end of this article

Results:

There had been a significant association between HFD and DM across age strata. Stronger relationships were observed in older age groups, specifically for drawing features reflecting fine motor coordination and visuospatial organization. Age-stratified analyses also revealed non-uniform patterns of link, indicating that developmental stage moderated the further strengthen relationships between drawing performance and milestone measures.

Conclusion:

Results suggested that quantitatively coded human figure drawings are associated with motor and cognitive developmental milestones in children aged 4–7 years. Though variations were seen across **Open Access**. This is an open access article distributed under the terms of the CC-BY License.

developmental stages. HFD might be a useful adjunctive indicator of developmental progression when applied with objective scoring and age-appropriate interpretation, but should not be used as a sole diagnostic tool.

Keywords: *Human Figure Draw test, Psychology, Diagnostic tool, Neurodevelopment, Milestones, Cognition.*

Introduction

Early childhood is one of the critical period in terms of rapid neurodevelopment. In this phase, all motor coordination, visuospatial integration, and cognitive planning abilities emerge and thrive in parallel^[1-5]. Though there are tests available that are gold standard but those tests can be time-intensive, resource-dependent, and occasionally limited by multiple factors^[6]. Human Figure Drawing (HFD) has been a part of child assessment for long time^[7]. Initially it was conceptualized as a projective technique which is used to reveal personality traits or emotional conflicts, HFD has undergone massive theoretical and methodological reassessment over the past several years^[8]. Although the use of HFD as a diagnostic tool has not been established yet it shows the development of milestones effectively^[9]. Literature in developmental psychology has shown that the child's ability to make visibly recognized drawing is improved by age increment^[10]. The drawings of children in pre schooling system are not as good or notable as of a child in higher classes^[11]. Despite of this, There is no data available regarding testing of HFD against the milestones of kids^[12]. Previous studies have mostly relied on the global or subjective interpretations of drawings, limiting it's reliability acontributing to inconsistent conclusions. Furthermore, few investigations conflated emotional or personality inference with developmental assessment, further limiting the specific developmental construction reflected in drawing tasks^[13]. More recent approaches have now been focused to fill that gap area like quantitative coding systems in which discrete drawing elements like inclusion of body part, spatial organization, proportional accuracy and motor execution are scored systematically^[14]. The analyses done quantitatively have shown associations of cognitive abilities and general maturation^[15,16]. Many research papers have also examined the age ranges more broadly without strata which has masked the age-specific relationship requirement between drawing performance and developmental milestones^[17-20]. Therefore, the present study aims to examine the associations between human figure drawing performance and motor and cognitive developmental milestones in children aged 4–7 years, using a modified quantitative coding system and an age-stratified analytical design.

Methods

It was a cross-sectional, age-stratified analytical design to examine associations between human figure drawing performance and motor and cognitive developmental milestones in the children of age range 4–7 years. Children were taken through snow ball sampling who lives in Karachi,

Open Access. This is an open access article distributed under the terms of the CC-BY License.

Pakistan only. Karachi had been selected as the study setting due to its demographic diversity and accessibility to both educational and clinical pediatric populations. Participants were needed to be enrolled in any educational setting and were needed to follow simple verbal instructions. Children with any previously diagnosed neurodevelopmental disorders, intellectual disability, visual or motor impairments affecting drawing ability were not included. Also of any known neurological conditions or current psychiatric diagnoses were also excluded. Children who were receiving the occupational therapy, physiotherapy, or cognitive rehabilitation were also excluded to minimize intervention-related confounding. Participants were taken from preschools and primary schools and pediatric OPDs in Karachi. Informed consent were taken from parents or legal guardians. The stratification of age was achieved by dividing the subjects in the groups of four: 4, 5, 6, and 7 years to check the analysis solely based on specificity of age. Sample size was calculated using rao software. Data collection procedure started after approval and consent from parents and children were kept in a familiar environment to reduce the anxiety and performance bias. Children followed the instructions and drew human figure on a blank sheet of paper without any time restriction. Drawings had been scored using a modified quantitative coding system focusing on objectively observable features, including presence and accuracy of body parts, how proportional they were, what was the spatial organization and how they used fine motor control. Two independent raters checked this coding protocol scored all drawings. Inter rate reliability was 0.80. Motor and cognitive tools checked fine motor coordination along with problem-solving and age-expected cognitive abilities. Data were analyzed using statistical software SPSS 26. Descriptive statistics were calculated for demographic variables and outcome measures. Normality of continuous variables was assessed using the Shapiro–Wilk test. For the normally distributed data, parametric tests used were Pearson correlation and one-way analysis of variance were applied. For non-normally distributed data, non-parametric alternatives such as Spearman's rank correlation and Kruskal–Wallis tests were used. Age-stratified analyses were performed to examine developmental stage-specific associations. A p-value of less than 0.05 was considered statistically significant for all analyses.

Results

Table 1 shows the demographic data of the population taken, Average age was 5.5 ± 1.1 . All participants of different ages were taken equally. There were more male than female in terms of gender.

Table:1 Demographic Characteristics of study sample

Variable	n (%) / Mean \pm SD
----------	-----------------------

Open Access. This is an open access article distributed under the terms of the CC-BY License.

Age (years)	5.5 ± 1.1
4 years	24 (25.0%)
5 years	24 (25.0%)
6 years	24 (25.0%)
7 years	24 (25.0%)
Gender	
Male	50 (52.1%)
Infant weight (kg), mean ± SD	6.2 ± 0.9

Table 2 shows the mean scores of HFD drawing. Among 4 age groups, HFD score of 7 years was the highest. Descriptive analysis demonstrated a progressive increase in human figure drawing scores, motor milestone scores, and cognitive milestone scores with advancing age.

Table 2: Mean Scores of Human Figure Drawing and Developmental Measures by Age Group

Age Group	HFD Score (Mean ± SD)	Motor Milestones Score (Mean ± SD)	Cognitive Milestones Score (Mean ± SD)
4 years	18.4 ± 4.2	42.1 ± 6.5	45.3 ± 5.9
5 years	24.7 ± 5.1	49.8 ± 5.8	52.6 ± 6.1
6 years	31.9 ± 4.8	56.4 ± 4.9	59.2 ± 5.4
7 years	36.8 ± 4.3	61.7 ± 4.2	64.5 ± 4.6

In table 3, Positive association between the HFD and Motor and cognitive development tool has been noticed across all age groups. Associations have been seen more strongly in higher age groups.

Table:3 Correlation Between HFD Performance and Developmental Milestones

Age Group	Motor Milestones (r)	p-value	Cognitive Milestones (r)
4 years	0.41	0.041	0.36

Open Access. This is an open access article distributed under the terms of the CC-BY License.

5 years	0.53	0.009	0.49
6 years	0.62	0.002	0.58
7 years	0.68	<0.001	0.64

Discussion

This research paper showed a significant positive correlations across age strata for the association of HFD and developmental milestones. Many developmental theories and empirical findings support the notion that children's drawings evolves as they age along with underlying motor and cognitive maturation^[13,21-23]. Previous papers indicates that as children progress through defined stages of drawing development, their skills in all fields increase as well reflecting their proper cognitive–motor integration rather than any physical or artistic preference^[24]. As Medin DL observed, children's human figure drawings had been advancing visibly through recognizable stages like from rudimentary "tadpole" figures to more structured representations^[25]. Our findings are in line with classical and contemporary developmental models. Kellogg's foundational work on fine motor development demonstrated that children's drawings become progressively sophisticated between ages 4 and 7 as fine motor control improves and symbolic representation becomes more stable as mentioned in Danilo's paper^[26]. The current results confirms empirical basis by proving that associations between HFD and developmental milestones are not consistent across age but improves with age. This pattern is in line with broader evidence that, in the early childhood, the increment of integration of motor and perception coordination helps in more detailed and structured drawings^[27]. It has also been found that some of the papers used HFD as a nonverbal proxy for checking intelligence generally^[28]. Importantly, Current use of modified quantitative coding and age-stratified analyses increases the validity ecologically relative to previously used subjective scoring systems^[29]. By using more discrete drawing features and linking them to independently checked motor and cognitive milestones, the results do support a developmental interpretation of HFD performance that is statistically grounded and age-sensitive. This also aligns with the contemporary perspectives that argues for tasks of drawing as nonthreatening, easily applied adjuncts in developmental evaluation rather than as standalone diagnostic instruments^[30]. There are few limitations that needs to be mentioned as well. The design which is cross sectional limits the causal inference that's why longitudinal studies are required to meet this merit. Secondly, environmental factors such as exposure to draw a good drawing, cultural differences and experiences were not assessed that can limit the drawing behaviour suggesting that generalization across diverse populations should be cautious. As in summary, our results add to a growing developmental literature benefiting the future studies by showing that quantitatively coded human figure drawing performance is notably linked with age-expected motor and cognitive developmental milestones in early childhood. These links strengthen with age and provide a nuanced understanding of drawing behavior as reflective of integrated developmental progress.

Open Access. This is an open access article distributed under the terms of the CC-BY License.

Conclusion

The findings of this study revealed that the results of this research could be used as a tool to assess developmental milestones of children and to facilitate the overall assessment. The application of this tool could be used as an alternative to developmental projection. It is important to note that this tool should be used as an adjunct to standardized developmental assessments.

Author Contributions:

Ms Aqsa Arif verifies the full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis

Concept and design: Aqsa Arif

Acquisition, analysis, or interpretation of data: Aqsa Arif

Drafting of the manuscript: Aqsa Arif

Critical review of the manuscript for important intellectual content: Aqsa Arif

Statistical analysis: Aqsa Arif

Obtained funding: Not applicable

Administrative, technical, or material support: Not applicable

Supervision: Not applicable

Conflict of Interest Disclosures: None reported.

Funding/Support: None

References

1. Zheng Q, Chi A, Shi B, Wang Y, Ma Q, Zhou F, Guo X, Zhou M, Lin B, Ning K. Differential features of early childhood motor skill development and working memory processing: evidence from fNIRS. *Front Behav Neurosci*. 2023 Sep 26;17:1279648. doi: 10.3389/fnbeh.2023.1279648. PMID: 37840544; PMCID: PMC10574188.
2. Misirliyan SS, Boehning AP, Shah M. Developmental Milestones. [Updated 2023 Mar 16]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: <https://www.ncbi.nlm.nih.gov/books/NBK557518/>
3. National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Board on Health Care Services; Committee on the Identification and Prognosis

Open Access. This is an open access article distributed under the terms of the CC-BY License.

of Low Birth Weight Babies in Disability Determinations; Applegate A, Spicer CM, Frontera W, editors. Low Birth Weight Babies and Disability. Washington (DC): National Academies Press (US); 2024 Feb 21. 3, Developmental Domains and Trajectories. Available from: <https://www.ncbi.nlm.nih.gov/books/NBK605579/>

4. Cortes RA, Green AE, Barr RF, Ryan RM. Fine motor skills during early childhood predict visuospatial deductive reasoning in adolescence. *Dev Psychol.* 2022 Jul;58(7):1264-1276. doi: 10.1037/dev0001354. Epub 2022 Mar 31. PMID: 35357864.
5. Nelson CA 3rd, Gabard-Durnam LJ. Early Adversity and Critical Periods: Neurodevelopmental Consequences of Violating the Expectable Environment. *Trends Neurosci.* 2020 Mar;43(3):133-143. doi: 10.1016/j.tins.2020.01.002. Epub 2020 Feb 12. PMID: 32101708; PMCID: PMC8092448.
6. Faruk T, King C, Muhit M, Islam MK, Jahan I, Baset KU, Badawi N, Khandaker G. Screening tools for early identification of children with developmental delay in low- and middle-income countries: a systematic review. *BMJ Open.* 2020 Nov 23;10(11):e038182. doi: 10.1136/bmjopen-2020-038182. Erratum in: *BMJ Open.* 2021 Nov 16;11(11):e038182corr1. doi: 10.1136/bmjopen-2020-038182corr1. PMID: 33234622; PMCID: PMC7684835.
7. Zucker KJ, Finegan JA, Doering RW, Bradley SJ. Human figure drawings of gender-problem children: a comparison to sibling, psychiatric, and normal controls. *J Abnorm Child Psychol.* 1983 Jun;11(2):287-98. doi: 10.1007/BF00912092. PMID: 6352776.
8. Papangelo P, Pinzino M, Pelagatti S, Fabbri-Destro M, Narzisi A. Human Figure Drawings in Children with Autism Spectrum Disorders: A Possible Window on the Inner or the Outer World. *Brain Sci.* 2020 Jun 23;10(6):398. doi: 10.3390/brainsci10060398. PMID: 32585879; PMCID: PMC7349033.
9. Waiswol N. Projective techniques as psychotherapy. *Am J Psychother.* 1995 Spring;49(2):244-59. doi: 10.1176/appi.psychotherapy.1995.49.2.244. PMID: 7677204.
10. Long B, Fan JE, Huey H, Chai Z, Frank MC. Parallel developmental changes in children's production and recognition of line drawings of visual concepts. *Nat Commun.* 2024 Feb 8;15(1):1191. doi: 10.1038/s41467-023-44529-9. PMID: 38331850; PMCID: PMC10853520.
11. Fan JE, Bainbridge WA, Chamberlain R, Wammes JD. Drawing as a versatile cognitive tool. *Nat Rev Psychol.* 2023 Sep;2(9):556-568. doi: 10.1038/s44159-023-00212-w. Epub 2023 Jul 17. PMID: 39239312; PMCID: PMC11377027.
12. Calcaterra V, Magenes VC, Hruby C, Siccardo F, Mari A, Cordaro E, Fabiano V, Zuccotti G. Links between Childhood Obesity, High-Fat Diet, and Central Precocious Puberty. *Children (Basel).* 2023 Jan 29;10(2):241. doi: 10.3390/children10020241. PMID: 36832370; PMCID: PMC9954755.
13. Long B, Wang Y, Christie S, Frank MC, Fan JE. Developmental changes in drawing production under different memory demands in a U.S. and Chinese sample. *Dev Psychol.* 2023 Oct;59(10):1784-1793. doi: 10.1037/dev0001600. PMID: 37768614.
14. Dash D, Iwane F, Hayward W, Salamanca-Giron RF, Bönstrup M, Buch ER, Cohen LG. Sequence action representations contextualize during early skill learning. *Elife.* 2025 Sep 12;13:RP102475. doi: 10.7554/eLife.102475. PMID: 40938318; PMCID: PMC12431778.

Open Access. This is an open access article distributed under the terms of the CC-BY License.

15. Gonzalez Casanova I, DiGirolamo A, Kroker-Lobos MF, Ochaeta L, Ramirez-Zea M, Martorell R, Stein AD. Association between early child development trajectories and adult cognitive function in a 50-year longitudinal study in Guatemala. *BMJ Open*. 2021 Jun 30;11(6):e044966. doi: 10.1136/bmjopen-2020-044966. PMID: 34193485; PMCID: PMC8246364.
16. Malanchini M, Rimfeld K, Allegrini AG, Ritchie SJ, Plomin R. Cognitive ability and education: How behavioural genetic research has advanced our knowledge and understanding of their association. *Neurosci Biobehav Rev*. 2020 Apr;111:229-245. doi: 10.1016/j.neubiorev.2020.01.016. Epub 2020 Jan 20. PMID: 31968216; PMCID: PMC8048133.
17. Dosman C, Gallagher S, LaBerge P, Sahagian Whalen S, Koscielnuk D, Plaisance M, Dufour LA, Andrews D. Updated evidence-based developmental attainments for children: First 6 years. *Paediatr Child Health*. 2022 Jun 23;27(5):285-290. doi: 10.1093/pch/pxac038. PMID: 36016595; PMCID: PMC9394628.
18. Urruticoechea A, Oliveri A, Vernazza E, Giménez-Dasí M, Martínez-Arias R, Martín-Babarro J. The Relative Age Effects in Educational Development: A Systematic Review. *Int J Environ Res Public Health*. 2021 Aug 26;18(17):8966. doi: 10.3390/ijerph18178966. PMID: 34501556; PMCID: PMC8431425.
19. Wickstrom J, Choudhry I, Leone EJ, Piergies AMH, Das T, Chenowith A, Hehn A, Friedman EB, Livinski AA, Silfen K, Shad A, Iverson JM, Thurm A. Ages of sitting and walking milestone attainment in typically developing children worldwide: protocol for a scoping review. *BMJ Open*. 2025 Sep 11;15(9):e100567. doi: 10.1136/bmjopen-2025-100567. PMID: 40940058; PMCID: PMC12519397.
20. Kadam AS, Patil B, Kadam SS, Pandit AN, Kabra NS. Age of early milestones achievement and developmental outcome in children with Down syndrome. *Int J Dev Disabil*. 2024 Apr 9;72(1):99-107. doi: 10.1080/20473869.2024.2327785. PMID: 41624030; PMCID: PMC12857684.
21. Malik F, Marwaha R. Cognitive Development. [Updated 2023 Apr 23]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: <https://www.ncbi.nlm.nih.gov/books/NBK537095/>
22. Shi P, Feng X. Motor skills and cognitive benefits in children and adolescents: Relationship, mechanism and perspectives. *Front Psychol*. 2022 Nov 21;13:1017825. doi: 10.3389/fpsyg.2022.1017825. PMID: 36478944; PMCID: PMC9721199.
23. Klotzbier TJ, Schott N. Scaffolding theory of maturation, cognition, motor performance, and motor skill acquisition: a revised and comprehensive framework for understanding motor-cognitive interactions across the lifespan. *Front Hum Neurosci*. 2025 Aug 12;19:1631958. doi: 10.3389/fnhum.2025.1631958. PMID: 40874237; PMCID: PMC12378464.
24. Li Y, Wu X, Ye D, Zuo J, Liu L. Research progress on the relationship between fine motor skills and academic ability in children: a systematic review and meta-analysis. *Front Sports Act Living*. 2025 Jan 9;6:1386967. doi: 10.3389/fspor.2024.1386967. PMID: 39850871; PMCID: PMC11754413.

Open Access. This is an open access article distributed under the terms of the CC-BY License.

25. Medin DL, Atran S. The native mind: biological categorization and reasoning in development and across cultures. *Psychol Rev.* 2004;111(4):960–983. doi:10.1037/0033-295X.111.4.960.
26. Bondi D, Robazza C, Lange-Küttner C, Pietrangelo T. Fine motor skills and motor control networking in developmental age. *Am J Hum Biol.* 2022 Aug;34(8):e23758. doi: 10.1002/ajhb.23758. Epub 2022 May 25. PMID: 35613316; PMCID: PMC9541226.
27. Sutapa P, Pratama KW, Rosly MM, Ali SKS, Karakauki M. Improving Motor Skills in Early Childhood through Goal-Oriented Play Activity. *Children (Basel).* 2021 Nov 2;8(11):994. doi: 10.3390/children8110994. PMID: 34828707; PMCID: PMC8625902.
28. Wang HX, Ericsson K, Winblad B, Fratiglioni L. The Human Figure Drawing test as a screen for dementia in the elderly: a community-based study. *Arch Gerontol Geriatr.* 1998 Jul-Aug;27(1):25-34. doi: 10.1016/s0167-4943(98)00014-4. PMID: 18653148.
29. Frampton G, Whaley P, Bennett M, Bilotta G, Dorne JCM, Eales J, James K, Kohl C, Land M, Livoreil B, Makowski D, Muchiri E, Petrokofsky G, Randall N, Schofield K. Principles and framework for assessing the risk of bias for studies included in comparative quantitative environmental systematic reviews. *Environ Evid.* 2022;11:12. doi: 10.1186/s13750-022-00264-0. Epub 2022 Mar 29. PMID: 38264537; PMCID: PMC10805236.
30. Alharthi S. AI-powered in silico twins: redefining precision medicine through simulation, personalization, and predictive healthcare. *Saudi Pharm J.* 2025 Dec 24;34(1):1. doi: 10.1007/s44446-025-00055-x. PMID: 41441931; PMCID: PMC12738446.